
EXMARaLDA Add-In for MS Excel - Version 0.9.8.1

1 Summary

The EXMARaLDA Add-In for MS Excel is a freely available (GPL) plugin written using

the Office VBA API which allows users of Excel to import data from the EXMARaLDA

XML format into a spreadsheet (preserving cells and spans, as well as most types of

metadata – see below for details) and back again from a spreadsheet to XML. It can also

export data to PAULA XML and from TreeTagger/CWB SGML (so-called TreeTagger

format).

This add-in is compatible with Office XP, 2003, 2007, 2010 and 2013 under

Windows XP, Vista, Windows 7 or 8, and comes with absolutely no warranty. The latest

public version of the add-in can be found on http://exmaralda.org.

New in this release:

- Penn Treebank importer

- Hierarchical trees in PAULA exporter

- Multiple annotations for individual segment layers in PAULA exporter

2 Installing

To install the add-in follow these steps:

1. Copy the file exmaralda_io_0.9.8.1.xla to the directory that holds your Excel add-

ins. On an English language Windows XP installation this is usually:

C:\Documents and Settings\YOUR_USER_NAME\application

data\Microsoft\AddIns

Other languages may have slightly different paths (e.g. “Dokumente und

Einstellungen” for “Documents and Settings” on German Windows).

2. Open Excel and choose Tools -> Add-Ins… (again, other languages may use

different names, e.g. German Extras for Tools etc.)

3. Click Browse… and navigate to the file exmaralda_io_0.9.8.1.xla. Once the file is

chosen, the add-in Exmaralda_Io_0.9.8.1 should appear on the list of add-ins.

4. Check the box next to Exmaralda_Io_0.9.8.1 and click OK. A new menu called

Exmaralda should now appear in the menu bar above.

3 Uninstalling

To remove the add-in simply go to Tools -> Add-Ins and uncheck Exmaralda_Io_0.9.8.1.

By pressing OK the Exmaralda menu will now be removed. You may then optionally

delete the file exmaralda_io_0.9.8.1.xla if you wish.

4 Usage

The Exmaralda Add-In menu in Excel provides four basic functions as detailed below.

4.1 Import from Exmaralda

Choosing this function will open the Import Form.

Metadata

The form allows users to choose whether or not

metadata applying to an entire EXMARaLDA

document will be imported, and similarly for

metadata applying to each tier within a document.

Document metadata is stored in the Excel file’s

Comments property, which keeps the entire

header of the original XML file. Tier metadata is

stored in a comment to the header cell of each

column. Note that at present no metadata

contained in <ud-tier-information> and <ud-

information> tags within a <tier> element is

imported (support for this will probably be added

in a future version. A further type of element

which is ignored by the importer at present is the

<tierformat-table> of .exb files, meaning that

formatting information such as background colors

for each tier etc. are not carried over.

Import Behavior and Multiple Files

Each tier is imported in a separate column in Excel, so that horizontal layers from

EXMARaLDA are represented vertically as in the image below (this is because Excel can

only accommodate 256 columns; see “Transposing” below for an EXMARaLDA style

horizontal view). The user may determine where imported data will appear by selecting a

cell or cells – data will then be imported starting from the top-leftmost selected cell. Each

tier’s category attribute is used as a column header in bold.

When importing multiple files, users can select whether the columns representing

the annotation levels of each document should be imported side by side, each document

in a separate Excel workbook, or continuously underneath each other (usually only

suitable if all documents have precisely the same layers in the same order). When

documents are imported underneath each other, a header row is only generated for the

first document, and the other documents are assumed to have exactly the same columns.

If multiple files are imported into the same workbook and importing of document

metadata is still selected, only the first document’s header will be inserted into the

Comments property.

Batch Conversion

To convert multiple files to Excel use the Batch Import option. Files can be saved as

plain text (tab delimited), comma separated values (csv), Excel format (.xls), and in Excel

2007 or 2010, also in the new .xlsx format. Currently the file name is simply retained and

the new extension is substituted for the original one. You can also choose not to show the

result in Excel (“don’t show workbooks”) and whether or not existing files should be

overwritten.

Clean Up

Users can also select to clean up the input XML by removing <![CDATA[]]> tags and

ud-information markup within events (formatting within individual EXMARaLDA cells).

Finally, it is also possible to omit certain layers that should not be imported. To do so,

select do not import tiers and input the names of the tier categories that should be ignored,

separated by a semicolon, e.g. lemma;pos

4.2 Export to Exmaralda

A selected range of cells may be exported to

EXMARaLDA XML using the Export to

EXMARaLDA menu. The first row of the exported

data is assumed to contain the category names for

each annotation layers, and all other rows are treated

as data proper. If the Comments field of the Excel

workbook contains an EXMARaLDA header (usually

generated by the importer), this may be used for the

exported file, otherwise a generic header is generated

automatically. Similarly, tier attributes stored by the

importer in comments to the header cell of each layer

may be exported, with the exception of user defined

tier metadata in <ud-tier-information> and <ud-information> tags within tiers. If no

tier attributes are found, default values are inserted, which assume that the first column is

a transcription layer (type="t") and all other layers are annotation layers (type="a"), and

that the display name of the layer is the same as the category name.

 You can also choose to insert a space into empty cells in the first column, which

can be useful if you’re using that column for tokens and exporting the data to a program

that does not tolerate empty tokens. Finally, the Batch Export works similarly to the

Batch Import – you can select multiple files and export them all using the above settings.

Here it is also possible to specify a subset of columns to be exported from all files,

separated by semicolons.

4.3 Transpose Selection in a New Sheet

Since an Excel 2003 spreadsheet can only contain a maximum of 256 columns but as

many as 65536 rows, imported data is presented vertically by default. It is however

possible to transpose a selection into a horizontal format similar to the EXMARaLDA

editor using this command. The first row is assumed to contain layer headers and is

rendered in bold face. If the selected data contains more than 256 rows, the rows are

broken up into groups of up to 256 rows each and the headers are repeated for each block

to make navigation easier. Note that some spans may cross the border of a block of 256

lines. In such cases the add-in will attempt to find a cutoff point starting at a 200 row

block. Data that cannot be split up in this way (or in any way, if there is a span of more

than 256 rows), will not be able to be transposed.

4.4 Extract Metadata from Comments

When importing data from EXMARaLDA, metadata is saved in the files comments

property as unparsed XML. It is possible to use the menu item “extract metadata to new

sheet” to parse this XML into a new sheet called “meta” to get a tabular view of the

imported metadata. The table contains three columns, one for the metadata name, one for

the value, and a third column specifying whether this metadata was applied to the entire

file (project-name or transcription-name), to a speaker (e.g. sex and language annotations)

or a user-defined item (ud-information).

 If a sheet named “meta” already exists, the extraction will fail. Also, if no

metadata was imported from EXMARaLDA, the function will exit without creating the

metadata sheet.

4.5 Export to PAULA

Export to PAULA works similarly to EXMARaLDA

export, but with several additional options. It is assumed

that the first selected column represents the tokens of the

document and the first selected row contains annotation

level names, which should be valid XML attribute names.

It is possible to select automatic correction of annotation

level names, which at the moment replaces spaces and ‘@’

signs with underscores, umlauts and β ligatures with plain

vowel followed by e and ss respectively, and quotation

marks and apostrophes with _quot_ and _apos_. The token

column is also used to generate the base text of the

document, which is generated with spaces to separate the

contents in each row. This column may not contain spans.

Alternatively, it is possible to specify an already existing

token file in the text field at the bottom of the form. If this

is done, all references to a token file are replaced with this

string, and no raw text and token files are created. Another

option is to specify that the standoff annotations should

treat some other column as the base segmentation file,

ignoring the tokens. This is useful if the PAULA

annotations are supposed to point at a different format (e.g. TEI XML), or are supposed

to be merged with a different project. In this case, all annotation spans are generated to

match the spans of the column specified in “standoff based on”. Annotations

encompassing fewer lines than those in the spans of that column are then no longer

possible.

Pointing Relations

Pointing relations can be exported if column names are used of the type name(A>B),

where A and B stand for any column letters. Using name(A>A) creates pointing relations

from and to the same level of annotation markables. This can be used to create

dependencies or coreference annotations. For a more robust annotation that is not

disrupted by the addition/removal of columns, columns may also be referred to by name,

e.g. coref(entity>entity) produces a pointing relation of type coref between elements of

the column labeled entity. If you use namespaces, these must be included:

coref(ner:entity>ner:entity).

The contents of the cells in a pointing relation column may be either empty or

numerical. Numerical values give the target token line in the Excel sheet (not counting

the header). For example, a value 1 in the fourth line of column B after the header, with

the header coref(A>A), means “create a pointing relation of the type ‘coref’ from the

element in the fourth annotation line of column A to the element in the first annotation

line of column A”. If you are annotating directly in Excel and would like to use real

Excel line numbers (i.e. counting the header line), use the “target offset” option to adjust

the target line. If you would like the pointing relations to point not from 4 to 1 in the

example above, but the other way around, select “reverse edges”. It is also possible to

reverse only individual columns, e.g. if you’d like reversed dependency annotations and

non-reversed coreference. In this case, mark reversed columns with a left angle bracket:

name(A<A) and do not select reverse edges (this reverses all edges).

Finally, in order to annotate pointing relations with key-value pairs, use column

headers like anno(B) where anno is the annotation name and B is the letter of the column

containing the pointing relations to be annotated. For example, to annotate the coref

relation in the example above as type="anaphoric" use type(B) as a header for a new

column and the value anaphoric in the cell corresponding to the row of the pointing

relation. The example above could be applied to the table below:

Note that when using full column names as references, instructions in parentheses

should be removed, i.e. in the example above type(B) can be replaced by type(coref), but

not by type(coref(A>A)).

Annosets, DTDs and Multiple Annotations for one Segment or Token

Users can also choose whether or not an annoset will be generated for the data (a PAULA

XML manifest of the annotation levels present in the document), what DTDs should be

generated (all PAULA DTD’s, only those relevant to span annotations, or none) and

whether or not all span annotations are equally granular, in which case only one markable

(Seg) file can be generated to define all spans, with each annotation level creating only a

single feature file referring to the joint Seg file. This last option relies on the identical

granularity of the annotation levels and will fail if this assumption is violated. A further

text field lets users choose annotation names (separated by semi-colon) which will be

imported as feature attributes of the tokens, without a markable Seg file. To use this

option, the corresponding level should contain no spans, or else unexpected results may

follow.

Assigning Individual Annotations to the Same Markable

Beyond the possibility to assign all annotations to the same set of markables as described

above, it is also possible to set individual annotation columns to only generate annotation

features and attach these to the markables of some specific column. This will only work if

the column defining the markables has as at least as the same cells filled as the feature

annotation column. It is possible for the markable column to have filled cells that are

empty in the added feature annotation, but not vice versa.

 To mark a column as referring to the markables of another column, use one of the

two syntax types illustrated in the following figure:

The column-markable identity is indicated with the ‘=’ sign in parentheses. The column

being referred to can be addressed just as for pointing relations, either by its capitalized

letter (=B) or by its name (=entity). These work exactly the same, but (=entity) is more

robust if columns are added to the left of column B. Note that as always, namespaces

need to be retained when referring by name, so if B is called mmax:entity, then C can

have the header type(=mmax:entity), but not type(=entity).

Hierarchical Syntax Trees

There is now partial support for constituent syntax trees or other hierarchical ‘struct’

annotations in Excel. To use these, call multiple columns by the same name and add a

suffix in square brackets indicating which layer the current column is anchored to. The

deepest layer will always be anchored to a different named layer (typically the tokens,

‘tok’), while higher layers are numbered to indicate the order of the hierarchy. The

exporter assumes that larger spans dominate contained smaller spans, and prefers to

dominate the span at the next nearest depth. If this is empty, spans at a lower depth are

looked for, until the lowest layer is reached. The following image illustrates the structure:

The layer cat[tok] gives the entry point for the syntax tree: it dominates ‘tok’ directly. It

is dominated by cat[1], which is dominated by cat[2], and so on. Note however that

dominance can skip layer depths when there are gaps in the spans. For example, in row 4,

cat[1] has a span ‘PX’, but cat[tok] is empty. Therefore cat[1] will attempt to dominate

the next layer in the tree hierarchy, which is ‘tok’. Since a ‘tok’ is not empty on row 4,

PX will dominates the ‘tok’ on row 4 (the word ‘in’), but also the ‘NX’ from column

cat[tok] in row 5, since cat[tok] is not empty on that row. In this way, spans always imply

maximal dominance of elements under them, at the first available level of depth.

Similarly cat[5] dominates the large span ‘SIMPX’ from cat[4], but also the tok on row 9

(the period).

Note also that this syntax tree format can be generated in Excel by the PTB importer

plugin from a text file in the Penn Treebank bracketing format.

Corpus Prefixes and Namespaces

Users may specify a corpus prefix, which will be used at the beginning of all standoff file

names in the PAULA document. Alternatively the prefix can be generated automatically

from the Excel file name (minus the extension .xls or .xlsx). It is also possible to use

namespaces in column headers with an intervening colon (namespace:annoname), in

which case the namespace is prefixed to the respective file names with a period as a

separator, to form a PAULA namespace.

Metadata

Metadata may be stored in a separate worksheet, which must be called “meta”. Names of

metadata attributed should be in column A of the sheet and the values in column B. The

sheet may optionally have a header row (e.g. column headers like “name” and “value”); if

so, select the appropriate option in the metadata section of the export form.

Batch Export

When exporting multiple Excel files, use the batch export command, which first asks for

(multiple) Excel files and then for a location to generate the PAULA corpus. A subfolder

with the same name as the respective Excel file name will be generated at the target

location for each PAULA location. By default the first sheet of each chosen Excel file is

exported, though you may choose a different sheet number from the drop-down list

instead.

4.6 Import from TreeTagger/CWB SGML

The TreeTagger / CWB SGML format uses SGML elements in single lines to encompass

spans of tokens and gives any number of

attribute value annotations within these

elements. Rows without markup elements

are interpreted as tokens, and further

strings separated by tabs are annotations

of those tokens, usually part-of-speech

(pos) and lemmas.

 The TreeTagger importer allows

multiple files to be imported next to each

other, below each other, or in separate

workbooks, much like the EXMARaLDA

importer (see Section 4.1 for details). A

further option is given whether it should be assumed that the first two token annotations

after each token are called ‘pos’ and ‘lemma’, otherwise these, and in any case any

annotations after these, are sequentially names ExtraAnno# (where # is the column

number).

The behavior of the importer is as follows. Consider the following example input.

The sentence “This is a test” is encompassed by a <sent> element with no attributes and

contains two <chunk> elements with the attribute type="NP". Additionally, the verb is

encompassed by a tag <verb> with an attribute verb="auxiliary".

<sent>

<chunk type="NP">

This DT0 this

</chunk>

<verb verb="auxiliary">

is VBZ be

</verb>

<chunk type="NP">

a AT0 a

test NN1 test

</chunk>

</sent>

The importer will produce the following annotation columns: sent, filled with the value

“sent”, since this annotation contains no other information; chunk@type filled with the

value “NP” (two spans); and verb with the value “auxiliary”. Note that in the last case,

the column verb@verb is not generated. Additionally, the importer will put the tokens

into a column named tok and further generate the columns pos and lemma, or

ExtraAnno1 and ExtraAnno2 if the option to assume pos and lemma is turned off.

Also note that conflicting hierarchies are no problem for SGML, and the importer

accepts these. However, as dictated by the TreeTagger format, elements and tokens must

be on individual lines, no whitespace may precede them, and nesting of elements of the

same type if forbidden.

4.7 Import from Penn Treebank Bracket Format

The Penn Treebank importer can import data in

the Penn Treebank bracket format, which

represents syntax trees as bracket structures.

The import form offers several options.

Align to column

Instead of importing the tokens from the Penn

syntax tree, users can specify a column that

already contains the tokens. This can be a

column letter or header label. Filling this box

causes tokens not to be imported, and the next

lowest level of the syntax tree will refer to this

layer as a token source.

Suppress Tokens/POS Tags

These checkboxes simply cause tokens and

their POS tag annotations not to be outputted if

desired.

Output Non-Terminal Depth

Selecting this option will append the layer

depth in the tress in square brackets to each

column. This is necessary for export to the PAULA format (see PAULA Exporter above

and the figure below).

Token, POS and Non-Terminal Names

These boxes determine the column header given to the token column, the POS column

and alls of the non-terminal columns (defaults are tok, pos and cat).

Partition Tagsets

If the tree contains multiple hierarchies (e.g. for German, topological fields intertwined

with syntactic phrase categories), it can be useful to split up the PTB tree into multiple

separate trees. To do so, input multiple lists of space-separated tags, and separate the lists

with a semi-colon, as shown in the form above. As a result, the syntax tree for each tagset

will be imported while ignoring nodes with the labels from other tagsets. For example, if

you have a dominance SIMPX > VF > NX, as in columns E-G below, and the middle

node VF belongs to a different tagset than the other two, then one syntax tree can be

generated with SIMPX dominating NX directly and another tree with a separate VF node.

To give the second tree a separate node name, use multiple node names in the node name

box, separated by semicolons. Compare the two figures below for a fused tree and one

separating VF, MF and LK (topological field annotations) into a separate tree labeled

‘field’.

Annotation with one unpartitioned syntax tree

Multiple trees, with the field VF, MF and LK partitioned into a separate hierarchy

5 Limitations and Assumptions about the Data

5.1 EXMARaLDA XML

For the sake of simplicity and speed in handling large files, the add-in does not actually

parse EXMARaLDA XML on import, but rather reads each file line by line, making

certain assumptions about the order of elements and attributes. The add-in supports the

following variations:

- Time line events’ start and end attributes may stand in any order

- Time line elements may have labels and may be numbered arbitrarily

- For each tier, a category attribute is expected, which may appear anywhere

In all other cases it should be assumed that the importer expects data that looks like the

data produced by the exporter. That said, the importer is somewhat robust in that it

ignores anything it does not understand: this means it will happily import invalid XML if

it also contains the elements it expects. If you run into problems caused by hidden

assumptions made by the importer, please file a bug report, ideally with a sample of the

data which caused the problem.

5.2 PAULA XML

As noted above, the following assumptions are made about the Excel data to be exported:

- The tokens are in the leftmost selected column, which contains no spans.

- Column headers contain only alphanumeric ascii strings beginning with a letter

and without spaces or special characters (Umlaut, accents etc.; but see automatic

header correction in 4.5 above)

- When merging to one markable (Seg) file, conflicting spans will lead to errors

(the exporter does not validate for such errors at the moment).

For more information on PAULA XML see:

http://www.sfb632.uni-potsdam.de/en/paula-en.html

6 Contact

For questions, bug reports or feature requests regarding the add-in please contact

Amir Zeldes (amir {dot} zeldes {at} rz {dot} hu-berlin {dot} de).

